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ABSTRACT

In this paper, an experimental study is conducted to show the efficiency of the Quarter-Sweep Successive 
Over-Relaxation (QSSOR) iterative method by using the quadrature approximation equations to obtain 
numerical solutions of the first kind linear Fredholm integral equations. Furthermore, the derivation 
and implementation of the QSSOR method in solving first kind linear Fredholm integral equations 
are also presented. Numerical examples and comparisons with other existing methods are given to 
illustrate the effectiveness of the proposed method.  

Keywords: First kind linear Fredholm equations, Quadrature, Quarter-sweep iteration,   
 Successive Over-Relaxation

INTRODUCTION
Presently, the theory and application of integral equations is an important subject within applied 
mathematics. Integral equations are used as mathematical models for many and varied physical 
circumstances and also occur as reformulations of other mathematical models. Particularly, linear 
Fredholm integral equations of the first kind appear in the mathematical formulation of various and 
important inverse problems such as seismology, gravity surveying, computerized tomography and 
image deblurring (Bӑutu et al., 2005). 
 The above-mentioned inverse problems, as well as others, can be formulated as a first kind linear 
integral equations, which has the generic form as follows
                             
  , , ,K x t y t dt f x a bC= =

C
^ ] ]h g g 6 @#  (1)

where the kernel function  K L2 #! C C] g and the function  f L! C] g are given, and  y L! C] g
is the unknown function to be determined.   K (x, t) is called Fredholm kernel if the kernel in Eq. 
(1) is continuous on the square  ,S a x b a t b# # # #= " , or at least square integrable on this 
square. Then, Eq. (1) with constant integration limits and Fredholm kernel are called first kind linear 
Fredholm integral equations (Polyanin & Manzhirov, 1998). Meanwhile, Eq. (1) also can be rewritten 
in the operator form as follows
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Definition (Maleknejad et al., 2006)

Let  :S T"l  be an operator from normed space S  into a normed space T, the equation y fl =  is 
called well-posed if  l  is onto, one to one and  :T S1

"l-  is continuous. Otherwise the equation is 
called ill-posed.
 In many application areas, numerical approaches were used widely to solve Fredholm integral 
equations. To solve Eq. (2) numerically, we either seek to determine an approximation solution in 
a chosen finite dimensional space by using projection method (Hsiao, 1980; Shang & Han, 2007; 
Maleknejad et al., 2006; Oladejo et al., 2008) or the quadrature method (Boland, 1972; Muthuvalu 
& Sulaiman, 2008; 2009). Such discretizations of integral equations lead to dense linear systems and 
can be prohibitively expensive to solve as n , the order of the linear systems increases. Thus, iterative 
methods are the natural options for efficient solutions of the linear system.
 Consequently, the concept of the half-sweep iteration method has been inspired by Abdullah 
(1991) via the Explicit Decoupled Group (EDG) method to solve two-dimensional Poisson equations. 
Half-sweep iteration is also known as the complexity reduction approach (Hasan et al., 2007). 
Following to that, applications of the half-sweep iteration iterative methods have been reviewed in 
Yousif and Evans (1995), Abdullah and Ali (1996), Othman et al. (2000), Sulaiman et al. (2004; 
2007; 2008) and Abdullah et al. (2006). In 2000, Othman and Abdullah extended this concept by 
introducing quarter-sweep iterative method via the Modified Explicit Group (MEG) iterative method 
to solve two-dimensional Poisson equations. Further studies to verify the effectiveness of the quarter-
sweep iterative methods have been carried out by Othman and Abdullah (2001), Hasan et al. (2005), 
Sulaiman et al. (2004), Hasan et al. (2008) and Sulaiman et al. (2008). The basic idea of the half- and 
quarter-sweep iterative methods is to reduce the computational complexities during iteration process. 
Since the implementation of the half- and quarter-sweep iterations will only consider nearly half 
and quarter of all interior node points in a solution domain respectively. In this paper, we examined 
the applications of the half- and quarter-sweep iteration concepts with Successive Over-Relaxation 
(SOR) iterative method by using approximation equation based on quadrature scheme for solving 
problem (1). The standard SOR iterative method is also called as the Full-Sweep Successive Over-
Relaxation (FSSOR) method. Meanwhile, combinations of the SOR method with half- and quarter-
sweep iterations are called as Half-Sweep Successive Over-Relaxation (HSSOR) and Quarter-Sweep 
Successive Over-Relaxation (QSSOR) methods respectively.
 The remainder of this paper is organized in following way. In next section, the formulation of 
the full-, half- and quarter-sweep quadrature approximation equations will be elaborated. The latter 
section of this paper will discuss the formulations of the FSSOR, HSSOR and QSSOR iterative 
methods in solving linear systems generated from discretization of the Eq. (1) and then some numerical 
results will be shown to assert the effectiveness of the proposed method. Besides that, analysis on 
computational complexity is also given and the concluding remarks are given in final section.

FULL-, HALF- AND QUARTER-SWEEP QUADRATURE APPROXIMATION 
EQUATIONS

As afore-mentioned, a discretization scheme based on method of quadrature was used to construct 
approximation equations for problem (1) by replacing the integral to finite sums. Generally, quadrature 
method can be defined as follows
                                  
  y t dt A y t yj j n

j

n
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where  tj (j = 0, 1, 2, ...  n) is the abscissas of the partition points of the integration interval [a, b], Aj 
(j=0, 1, 2, ...  n),   is numerical coefficients that do not depend on the function y(t) and  nf (y) is the 
truncation error of Eq. (3). Meanwhile, Fig. 1 shows the finite grid networks in order to form the 
full- and quarter-sweep quadrature approximation equations.

(a)

(b)

•••

(c)

Figure 1 a), b) and c) show distribution of uniform node points for the full-, half- and 
quarter-sweep cases respectively.

 Based on Fig. 1, the full-, half- and quarter-sweep iterative methods will compute approximate 
values onto node points of type • only until the convergence criterion is reached. Then, other 
approximate solutions at remaining points (points of the different type) can be computed using the 
direct method (Abdullah, 1991; Othman & Abdullah, 2000).
 By applying Eq. (3) into Eq. (1) and neglecting the error, nf (y), a system of linear equations can 
be formed for approximation values of y(t). The following linear system generated using quadrature 
method can be easily shown in matrix form as follows
                                                 
  My = f (4)
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 In order to facilitate the formulation of the full-, half- and quarter-sweep quadrature approximation 
equations for problem (1), further discussion will be restricted onto repeated trapezoidal (RT) scheme, 
which is based on linear interpolation formula with equally spaced data. Based on RT scheme, 
numerical coefficient  will satisfy the following relation  
                                     
 , ,

,

ph j n

ph otherwise
A 2

1
0

j =
=

*  (5)

where the constant step size,  h is defined as follows
                                               
 h n

b a
=

-   (6)

and n is the number of subintervals in the interval [a,b]. Meanwhile, the value of p, which corresponds 
to 1, 2 and 4, represents the full-, half- and quarter-sweep cases respectively. 

FORMULATION OF THE SUCCESSIVE OVER-RELAXATION METHODS
As mentioned in Section 1, FSSOR, HSSOR and QSSOR iterative methods will be applied to solve 
linear system generated from the discretization of the problem (1), as shown in Eq. (4). Let matrix  
M be decomposed into
                                          M=D-L-U (7)

where D, -L and U  are diagonal, strictly lower triangular and strictly upper triangular matrices 
respectively. Thus, the general scheme for FSSOR, HSSOR and QSSOR iterative method can be 
written as
                
 Dy Ly Uy f Dy1

~ ~ ~ ~ ~

k k k k1 1~ ~ ~ ~= + + + -+ + ]] ] ] ]gg g g g (8)

where ~ is a weighted parameter.
 Actually, the iterative methods attempt to find a solution to the system of linear equations by 
repeatedly solving the linear system using approximations to the vector y. Iterations for iterative 
methods continue until the solution is within a predetermined acceptable bound on the error. By 
determining values of matrices D, -L and U as stated in Eq. (7), the general algorithm for FSSOR, 
HSSOR and QSSOR iterative methods to solve problem (1) would be generally described in Algorithm 
1. 

Algorithm 1: FSSOR, HSSOR and QSSOR iterative methods
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NUMERICAL EXPERIMENTS
In order to compare the performances of the iterative methods described in the previous section, 
several experiments were carried out on the following two Fredholm integral equations problems.  
In this paper, we will only consider well-posed equations and the case where a=0  and b=1.

Example 1 (Rashed, 2003)
                          
  ( , ) ( ) ( )K x t y t dt x x

6
1 3

0

1
= -# , x0 11 1  (9)

with kernel

  ( , )
( ),

( ),
K x t

t x t x

x t x t
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1

1

#
=

-

-
* .

The exact solution of the problem is

  y(x) = x.

Example 2 (Rashed, 2003)

  ,( , ) ( ) ( )e x xK x t y t dt e 1 0 11x

0

1
1 1= + - -# , (10)

with kernel

  ( , )
( ),

( ),
K x t

t x t x

x t x t

1

1

1

#
=

-

-
* .

The exact solution of the problem is 

 y(x) = ex.

 There are there parameters considered in numerical comparison such as number of iterations, 
execution time and maximum absolute error. As comparisons, the Full-Sweep Gauss-Seidel (FSGS) 
method acts as the control of comparison of numerical results. Throughout the simulations, the 
convergence test considered the tolerance error of 10 10f = - .  Meanwhile, the experimental values 
of  ~ were obtained by running the program for different values of  ~ and choosing the one(s) that 
gave the minimum number of iterations. The simulations were carried out on several mesh sizes, 
511, 1023, 2047, 4095 and 8191. 
 Results of numerical simulations, which were obtained from implementations of the FSGS, 
FSSOR, HSSOR and QSSOR iterative methods for Examples 1 and 2, have been recorded in Tables 
1 and 2 respectively. Meanwhile, reduction percentage of the number of iterations and execution time 
for the FSSOR, HSSOR and QSSOR methods compared with FSGS method have been summarized 
in Table 3.
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Table 1 Comparison of a number of iterations, execution time and maximum absolute error 
for the iterative methods at optimum value of  ~  (Example 1)

Number of iterations

Methods
Mesh size

511 1023 2047 4095 8191
FSGS
FSSOR
HSSOR
QSSOR

381
273
252
226

461
312
273
252

550
347
312
273

646
371
347
312

753
450
371
347

Execution time (seconds)

Methods
Mesh size

511 1023 2047 4095 8191
FSGS
FSSOR
HSSOR
QSSOR

6.36
4.57
1.66
0.56

30.70
20.15
5.02
1.06

143.14
64.86
28.87
3.96

665.59
258.37
70.33
15.08

3177.57
1273.59
343.71
66.25

Maximum absolute error

Methods
Mesh size

511 1023 2047 4095 8191
FSGS
FSSOR
HSSOR
QSSOR

6.8225 E-10
6.4063 E-10
6.3826 E-10
6.3849 E-10

8.3429 E-10
6.9672 E-10
6.4063 E-10
6.3826 E-10

8.4449 E-10
7.3476 E-10
6.9672 E-10
6.4063 E-10

9.7143 E-10
7.9103 E-10
7.3476 E-10
6.9672 E-10

9.7966 E-10
8.3959 E-10
7.9103 E-10
7.3476 E-10

Table 2 Comparison of a number of iterations, execution time and maximum absolute error 
for the iterative methods at optimum value of ~  (Example 2)

Number of iterations

Methods
Mesh size

511 1023 2047 4095 8191

FSGS
FSSOR
HSSOR
QSSOR

394
284
243
202

479
325
284
243

568
361
325
284

667
386
361
325

728
469
386
361

Execution time (seconds)

Methods
Mesh size

511 1023 2047 4095 8191

FSGS
FSSOR
HSSOR
QSSOR

4.77
4.43
1.58
0.29

20.36
17.37
5.45
1.13

91.35
67.21
23.66
4.82

423.66
270.31
78.11
21.17

2034.36
1159.89
329.60
89.45

Maximum absolute error

Methods
Mesh size

511 1023 2047 4095 8191

FSGS
FSSOR
HSSOR
QSSOR

8.6244 E-7
8.6244 E-7
8.5907 E-6
3.4162 E-5

2.1571 E-7
2.1571 E-7
2.1540 E-6
8.5907 E-6

5.5889 E-8
5.5217 E-8
5.3914 E-7
2.1540 E-6

2.5713 E-8
2.2807 E-8
1.3544 E-7
5.3914 E-7

4.2551 E-8
3.7588 E-8
3.7003 E-8
1.3544 E-7
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Table 3 Reduction percentage of the number of iterations and execution time for the FSSOR, HSSOR and 
QSSOR methods compared with FSGS method

Methods
                                                Example 1

Number of iterations Execution time

FSSOR
HSSOR
QSSOR

28.34 - 42.57%
33.85 - 50.74%
40.68 - 53.92%

28.14 - 61.19%
73.89 - 89.44%
91.19 - 97.92%

Methods
Example 2

Number of iterations Execution time

FSSOR
HSSOR
QSSOR

27.91 - 42.13%
38.32 - 46.98%
48.73 - 51.28%

7.12 - 42.99%
66.87 - 83.80%
93.92 - 95.61%

COMPUTATIONAL COMPLEXITY ANALYSIS
In order to measure the computational complexity of the FSSOR, HSSOR and QSSOR iterative 
methods, an estimation amount of the computational work required for iterative methods have been 
conducted. The computational work is estimated by considering the arithmetic operations performed 
per iteration. Based on Algorithm 1, it can be observed that there are  additions/subtractions (ADD/
SUB) and  multiplication/divisions (MUL/DIV) in computing a value for each node point in the 
solution domain for first kind linear Fredholm integral equations. From the order of the coefficient 
matrix,  in Eq. (4), the total number of arithmetic operations per iteration for the FSSOR, HSSOR 
and QSSOR iterative methods in solving problem (1) has been summarized in Table 4.

Table 4 Total number of arithmetic operations per iteration for FSSOR, HSSOR and QSSOR methods

Methods
Arithmetic Operation

ADD/SUB MUL/DIV

FSSOR n2 +3n+2 2n2 +7n+5

HSSOR n n
4 2

3
2

2

+ + n n
2 2

7
5

2

+ +

QSSOR n n
16 4

3
2

2

+ +
n n
8 4

7
5

2

+ +
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CONCLUSIONS
In Section 2, it has shown that the formulation of full-, half- and quarter-sweep quadrature 
approximation equations based on RT scheme can easily generate a system of linear equations. 
Through numerical solutions obtained in Tables 1 and 2, it clearly shows that half- and quarter-
sweep iteration concept reduces number of iterations and computational time of the iterative method 
(refer Table 3). Meanwhile, the accuracy of all the iterative methods is in good agreement. It can be 
summarized that the QSSOR method is the most superior among the iterative methods in the sense 
of number of iterations and execution time as the mesh sizes getting larger.  This is mainly because 
of computational complexity of the QSSOR which is approximately 75% and 50% less than FSSOR 
and HSSOR methods respectively, see Table 4.
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